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• Recent successes in AI [1]

• Primarily in Machine Learning (ML) 

and Deep Learning (DL)

• But: Complicated “Black Boxes“ [2]

• → Lack of trust

• Critical domains: Healthcare, finance, cybersecurity, …

• Not only models explaining themselves but explain existing data

• Fuzzy rule-based regression is inherently explainable

• Usable in many areas of XAI (see appendix for a simple taxonomy)
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SECTION 2

Introduction to Fuzzy Logic
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• Fuzzy sets: Use Membership Functions (MFs) 

• 𝜇𝑋: ℝ → [0,1]

• 𝑎 ∈ ℝ, fuzzy set 𝑋, 𝜇𝑋 𝑎 ∈ 0,1

• Vagueness is important for reasoning [5]

• Are bacteria anmials? [4]

• Types of fuzzy sets

• Type 0: Crisp outputs of Takagi-Sugeno-Kang (TSK)-Systems (used in [6])

• Type 1: Degree of membership (we will constrain ourselves to these)

• Type 2: Model multiple sources of uncertainties in MFs
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• Operations compute memberships:
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• NOT𝜇¬𝐴: 1 − 𝑥

• Often correlation instead of implication [9]

• 14+ types of fuzzy implications [10]
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• Consequent will cap defuzzification

• min(𝜇𝑋, 𝑐𝑋) for all sets 𝑋 and 

consequent values 𝑐

• Good = 0

• Acceptable ≈ 0.3

• Bad = 0.3
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• Consequent will cap defuzzification

• min(𝜇𝑋, 𝑐𝑋) for all sets 𝑋 and 

consequent values 𝑐

• Good = 0

• Acceptable ≈ 0.3

• Bad = 0.3

• Domain-Value of MF-Centroid will be

the output

• Only on the remaining shape
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• Inference outputs are “Type-0“ (=crisp) polynomials [11]

• Use antecedent values as weight for conclusions

• Weighted sum as output

Example
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• Inference outputs are “Type-0“ (=crisp) polynomials [11]

• Use antecedent values as weight for conclusions

• Weighted sum as output

Example

We get Placement =
0.45∗0 ∗ 150−110+20∗1.5 +max 0,0.65 ∗(200−ℎ)

(0.45∗0)+max 0,0.65
= 90

Martin Dallinger; 15.05.2024 13

TAKAGI-SUGENO-KANG 
DEFUZZIFICATION

[11] T. Takagi and M. Sugeno, Fuzzy Identification of Systems and Its Applications to Modeling and Control

h: Practice time in hours = 110

d: Level duration in weeks = 1.5

IF beginner AND fast THEN placement = 150 – h + 20*d
IF professional OR medium THEN placement = 200-h



• Inference outputs are “Type-0“ (=crisp) polynomials [11]

• Use antecedent values as weight for conclusions

• Weighted sum as output

Example

We get Placement =
0.45∗0 ∗ 150−110+20∗1.5 +max 0,0.65 ∗(200−ℎ)

(0.45∗0)+max 0,0.65
= 90

Martin Dallinger; 15.05.2024 13

TAKAGI-SUGENO-KANG 
DEFUZZIFICATION

[11] T. Takagi and M. Sugeno, Fuzzy Identification of Systems and Its Applications to Modeling and Control

h: Practice time in hours = 110

d: Level duration in weeks = 1.5

IF beginner AND fast THEN placement = 150 – h + 20*d
IF professional OR medium THEN placement = 200-h



Simple methods highlighted by [18]

Martin Dallinger; 15.05.2024 14

VISUALIZING FUZZY INFERENCE
SYSTEMS

[18] J. Cao, et al., Fuzzy Inference System With Interpretable Fuzzy Rules: Advancing Explainable Artifcial Intelligence 

for Disease Diagnosis

[12] https://github.com/tenaci-hand-grip/fuzzy-visualization, 05.04.2024

https://github.com/tenaci-hand-grip/fuzzy-visualization


Simple methods highlighted by [18]

Martin Dallinger; 15.05.2024 14

VISUALIZING FUZZY INFERENCE
SYSTEMS

[18] J. Cao, et al., Fuzzy Inference System With Interpretable Fuzzy Rules: Advancing Explainable Artifcial Intelligence 

for Disease Diagnosis

[12] https://github.com/tenaci-hand-grip/fuzzy-visualization, 05.04.2024

Explicit Rule List

IF (A  AND B)         THEN C=2

IF (A OR D)            THEN E=4, C=1

IF (G OR (NOT F)) THEN C=0

https://github.com/tenaci-hand-grip/fuzzy-visualization


Simple methods highlighted by [18]

Martin Dallinger; 15.05.2024 14

VISUALIZING FUZZY INFERENCE
SYSTEMS

[18] J. Cao, et al., Fuzzy Inference System With Interpretable Fuzzy Rules: Advancing Explainable Artifcial Intelligence 

for Disease Diagnosis

[12] https://github.com/tenaci-hand-grip/fuzzy-visualization, 05.04.2024

Explicit Rule List

IF (A  AND B)         THEN C=2

IF (A OR D)            THEN E=4, C=1

IF (G OR (NOT F)) THEN C=0

Explicit Rule List with MF

https://github.com/tenaci-hand-grip/fuzzy-visualization


Simple methods highlighted by [18]

Martin Dallinger; 15.05.2024 14

VISUALIZING FUZZY INFERENCE
SYSTEMS

[18] J. Cao, et al., Fuzzy Inference System With Interpretable Fuzzy Rules: Advancing Explainable Artifcial Intelligence 

for Disease Diagnosis

[12] https://github.com/tenaci-hand-grip/fuzzy-visualization, 05.04.2024

Explicit Rule List

IF (A  AND B)         THEN C=2

IF (A OR D)            THEN E=4, C=1

IF (G OR (NOT F)) THEN C=0

Explicit Rule List with MF

Showing Inference for One Sample

https://github.com/tenaci-hand-grip/fuzzy-visualization


Simple methods highlighted by [18]

Martin Dallinger; 15.05.2024 14

VISUALIZING FUZZY INFERENCE
SYSTEMS

[18] J. Cao, et al., Fuzzy Inference System With Interpretable Fuzzy Rules: Advancing Explainable Artifcial Intelligence 

for Disease Diagnosis

[12] https://github.com/tenaci-hand-grip/fuzzy-visualization, 05.04.2024

Image taken from [12]
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• Risk estimation of IT-Assets (BAKK)1

• You are the Chief Information Security Officer (CISO) of a big company

• Get asset data and risk scores from different departments

• Trust it blindly?

• Automatically create many rules and FIS

• Linear regression

→ Very high or low (negative coefficients) indicate important rules

• Statistical testing for rule (ir-)relevance

• Explain the data generation process

• Deviations from best practices/agreed frameworks?

• Conflicts or opposing actions?
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• Goal: Find rules that explain the data

• Combine 𝑘 ∈ ℕ such FIS 𝑔1, … , 𝑔𝑘: ℝ
𝑑 → ℝ linearly similar to [13,14]
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• Let 𝒙𝒊 ∈ ℝ𝑑 be the 𝑖-th input vector with 𝑑 dimensions

• Let 𝛼0, 𝛼1, … , 𝛼𝑘 ∈ ℝ be the rule-weights (parameters) we will tune later
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• Let 𝒙𝒊 ∈ ℝ𝑑 be the 𝑖-th input vector with 𝑑 dimensions

• Let 𝛼0, 𝛼1, … , 𝛼𝑘 ∈ ℝ be the rule-weights (parameters) we will tune later

𝑓 𝑥𝑖 , 𝛼0, 𝛼1, … , 𝛼𝑘 = 𝛼0 + 𝛼1𝑔1 𝒙𝒊 +⋯+ 𝛼𝑘𝑔𝑘 𝒙𝒊
.

• Minimize Ordinary Least Squares

• Let 𝑦𝑖 ∈ ℝ be the 𝑖-th output label (could also be defined multidimensional)
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• Minimize Ordinary Least Squares

• Let 𝑦𝑖 ∈ ℝ be the 𝑖-th output label (could also be defined multidimensional)

𝑆𝑆𝐸 =෍

𝑖=1

𝑛

𝑦𝑖 − 𝛼0 − 𝛼1𝑔1 𝒙𝒊 −⋯− 𝛼𝑘𝑔𝑘 𝒙𝒊
2

• General least squares problem with 𝑔𝑖 as basis functions [15]

• Solution: Set first derivative to zero → normal equations [15]

• No guarantee for global optimality → more examination/tries

• Numerically more stable with QR-Decomposition
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• Can some 𝑔𝑖 be dropped with same performance? [13]

• Statsitical test: Likelihood Ratio Test (let ℒ denote likelihood)

• 𝐻0: Basis function 𝑔𝑖 can be dropped

• Choose:

• Significance level (0.05 common) and 

• Degree of freedom: difference in parameters
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• Testing Significance Levels of Coefficients

• Can some 𝑔𝑖 be dropped with same performance? [13]

• Statsitical test: Likelihood Ratio Test (let ℒ denote likelihood)

• 𝐻0: Basis function 𝑔𝑖 can be dropped

• Choose:

• Significance level (0.05 common) and 

• Degree of freedom: difference in parameters

• Likelihood Ratio Test: Λ = 2(log ℒ𝑓𝑢𝑙𝑙 − log ℒ𝑟𝑒𝑑𝑢𝑐𝑒𝑑 )

• Assume Gaussian error distribution: Λ ~ Χ² [17]

• Support: “Central Limit Theorem“ and “Principle of Maximum Entropy“

• If Λ > Χ0.05,1
2 (crit.) → reject 𝐻0 → 𝑔𝑖 is important, keep!
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• Testing Significance Levels of Coefficients [13]

• Likelihood Ratio Test: Λ = 2(log ℒ𝑓𝑢𝑙𝑙 − log ℒ𝑟𝑒𝑑𝑢𝑐𝑒𝑑 )~ Χ²

• If Λ > Χ0.05,1
2 (crit.) → reject 𝐻0 → Variable is important, keep!

• Under Gaussian distribution assumptions for the data and Maximum 

Likelihood Estimation (MLE) for variance 𝜎2 =
𝑆𝑆𝐸

𝑛
[16]:

• 𝑛 is equal so we only test the 𝑆𝑆𝐸 of both models
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log ℒ 𝑆𝑆𝐸, 𝑛 = −
𝑛

2
log 2𝜋 −

𝑛

2
log

𝑆𝑆𝐸

𝑛
−
𝑛

2
𝑛:   number of samples

𝑆𝑆𝐸: Sum of Squared Errors
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• Determining rule importance by regressing over fuzzy systems
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• XAI has many facets and 

requirements

• Fuzzy logic is inherently

explainable

• Natural language

• Many possible visualizations

• Determining rule importance by regressing over fuzzy systems

• Only scratched the surface – also interesting: Adaptive Neuro-

Fuzzy-Inference-Systems (ANFIS)

• Time for Questions!
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• Type 1 fuzzy hedges [7]

• Linguistic operators

• Enhance descriptive capabilities

• “slightly, highly, very, more or less, much“

• Type 2 fuzzy hedges [7]

• Concept-related beyond MFs (out of scope)

• “safe“ vs. “essentially safe“ – basic criteria
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