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Introduction to XAI 1

1 Introduction to eXplainable Arti�cial Intelligence (XAI)

Over the last decades, Arti�cial Intelligence (AI) Systems have revolutionized the way in which
classical computer science problems are approached which lead to equalling or even outperforming
humans in more and more tasks [1]. These recent successes were mainly achieved in the sub�elds
Machine Learning (ML) and Deep Learning (DL) where modern approaches are often too complex
to be interpretable by humans. Such AI models are often called black boxes as without additional
explanation methods it is unknown what reasoning emerges in the model after training.

One of the fundamental problems of such complex, obscure, but often well-performing systems is the
lack of trust - even more so in domains like disease diagnosis as was highlighted by Cao et al. [2].
One major goal of the research area eXplainable Arti�cial Intelligence (XAI) is to bring light into
these black boxes. However, these techniques are not only useful to comprehend the inner-workings
of AI models but also to explain human (mis-)behavior in creating datasets as we shall see later.

1.1 Overview of XAI

Before we accustom ourselves with the intricate details of concrete models or methods, let us see
bigger picture of XAI to better understand the problems these models solve. According to Adadi et
al. [3], XAI has four primary motives:

1. Explain to justify (the decisions): Particularly crucial in high-stakes �elds like healthcare
or �nance for trust and accountability. Reasons for the justi�cation should be provided and
checked to avoid erroneous outcomes.

2. Explain to control: Helps identify when AI operates outside intended parameters, and aids
in understanding the capabilities of the system. Furthermore, this lucidity of XAI aids in
�nding errors or showing potential vulnerabilities.

3. Explain to improve: Understanding AI decisions aids in model re�nement by highlighting
shortcomings or biases.

4. Explain to discover: AI uncovers new knowledge, then explanations of these discoveries may
lead to new insights and advancements.

Considering these di�erent goals, it is apparent that di�erent architectures will be more or less
e�ective in achieving them. In Section 3 we will notice that later introduced fuzzy models and linear
combinations of them can ful�ll many of these requirements.

To see how these models �t into the bigger picture, let us consider a basic taxonomy of such XAI
models in Figure 1.1. It provides a simpli�ed combination of the XAI-taxonomies from Singh et al.
[4] and Ding et al. [1].

In categorizing explainability based on scope, three levels can be distinguished. The �rst, termed
local, involves inferences leading to a speci�c outcome, such as selecting a single leaf or branch in
a decision tree. This demonstrates the decision tree's practical application for narrow, targeted
decisions. Continuing with the example of decision trees, the second level, semi-local, encompasses
broader but still limited sections of the tree, involving multiple branches or outcomes. This scope is
used when a subset of the decision tree needs to be considered for analyzing a decision-making pro-
cess. The third, global scope, involves the analysis of an entire model and particularly its reasoning
for all possible outputs (in this example the entire decision tree). Contrary to merely presenting the
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Figure 1.1: A non-exhaustive basic taxonomy of XAI methods (adapted from [4] and [1])

decision tree as an output, the global approach implies utilizing the complete structure to overview
or analyze all potential decisions and outcomes.

If the applicability of the explanation method is very restricted to certain model classes, then the
explanation method is referred to as being model-speci�c. If the method can work on various model-
classes, we refer to it as being model-agnostic.

The categorization can also be made with regard to the stage of model development or deployment:
Model-agnostic methods, like downprojection of the data, which are typically applied to the data
before using the model, are referred to Pre-Model approaches. If the model comes with intrinsic
properties giving interpretable meaning to its outputs (like fuzzy approaches in Section 2 and Section
3), then we speak of In-Model systems and if the explanations come from techniques applied after
the model was trained, the authors refer to Post-Model systems, which are usually model-agnostic.
A popular and simple example of such Post-Model systems was highlighted by L. Breiman [5] where
one of the input-features of a dataset is randomly permuted to then assess its importance by decrease
in predictive performance.

If possible, it is always preferable to analyze the model of interest directly by examining and visual-
izing parameters or inherent aspects. Unfortunately, certain architectures demand di�erent analysis
methods. Therefore, another common technique, called surrogate models, involves using other, more
transparent models to attempt to (often only locally) describe the inner workings of the black-box
model. However, for the sake of clarity, this work will concentrate solely on direct model interpre-
tations, leaving the intriguing realm of surrogate models for another exploration.

To witness the practical use-cases of the above de�nitions, let us examine one concrete technique in
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more detail.

1.2 Signi�cance of Fuzzy Logic Within XAI

One common application for fuzzy logic in XAI is to use generated rules (either automatically or
by human labor) and then verify how well they explain the given data. A rule is commonly seen
as an If-Then-Statement. For example: If the temperature is low then the heating power should
be increased. In Section 2.2.2 we will note that, due to the de�nition of fuzzy systems, fuzzy rules
should more correctly be viewed as a correlation as shown by Mendel et al. [6]. Nonetheless, for
now it su�ces to see a rule as an If-Then-Statement.

Since these rules are fully transparent and can even be stated in natural language, they are fully
explainable descriptions of what happens on the technical level. We can use di�erent methods (e.g.
linear combinations of them) to describe a dataset, and then evaluate the contributions of the rules to
see how important they are and if these signi�cances deviate from the expectations. A prime example
of this process is provided by Cichy et al. [7, 8] in the data quality management domain, where
such rules are de�ned based on domain-speci�c metrics, which are later regressed over. As a result,
one could quickly estimate which rules are important, see if there is contradicting information and
even use the model to generate new predictions. Thus, we can see that such systems are promising
with respect to all the four explainability motives we listed in the beginning of this section, but the
example especially shows how such systems excel in explaining to discover.

In the categorization with the simpli�ed taxonomy of Section 1.1, such a fuzzy-based rule-regression-
system can be viewed as interpretations of a model-speci�c in-model global method. This piece will
focus on such and similar tasks. It should, however be noted, that recent work by Zhu et al.
[9] has shown that fuzzy models can also be used as model-agnostic surrogate models for local
interpretability of more complex DL models.
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2 Fundamentals of Fuzzy Logic

Traditional logic is based on crisp binary values, which can only be true or false. The essence of
fuzzy logic is based on L.A. Zadeh's fuzzy sets [10] where the degree of membership of an arbitrary
element of the fuzzy set a in the set X is not denoted by 0 (i.e. false: a is not an element of X) or
1 (true: a is an element of X) like it would be in the traditional set-theoretic sense. Instead, it is
expressed by a membership degree µX(a) ∈ [0, 1], where µX : R → [0, 1] is then commonly referred
to as being the Membership Function (MF) of the fuzzy set X.

To illustrate the necessity of this approach for accurately describing the real world, L.A. Zadeh [10]
provided a prominent example: The class of animals is not as well-de�ned as we think, since for
most humans it might be clear that clouds and buildings are not animals but cats and dogs are.
Looking at the boundary, however, like bacteria or star�sh, it becomes clear that also this distinction
should perhaps not be modeled as being binary (=crisp) but in the opposite way with a degree of
membership (=fuzzy). This observation becomes even more pronounced when we consider that the
challenge of classi�cation is not solely limited to individuals. It rather extends to the variability
in perspectives among di�erent people, leading to potential discrepancies in setting boundaries for
identical natural language descriptions.

Amongst others, E. H. Mamdani transfers this concept to approximate reasoning and even argued:

... vagueness is not a defect of language, but rather an important source of creativity.
Analogies are extremely important to creative thinking and vagueness surely plays a
dominant role in such thought processes.1

The de�nition of fuzzy logic as given by Swathi et al. [12] is �A type of mathematical logic ...�, that
�... makes it easier to reason with incomplete or contradictory material�. This logic then uses fuzzy
variables, which are derived by the respective set MFs and their operations as opposed to simple
binary variables used in traditional logic. Let us choose the AND-Gate for comparing an example
operation of traditional with fuzzy logic:

For traditional logic it holds that if we have two boolean variablesm and n, the expressionm AND n
is exactly true if and only if (i�) m is true and n is true. In fuzzy logic the AND-operation can be
expressed in multiple ways. A common way to de�ne this relationship between the fuzzy variables
was also shown by E. H. Mamdani [11] as follows: Let µA, µB : R → [0, 1] be arbitrary MFs for some
fuzzy sets A and B. Moreover, let x be the degree of membership of the crisp value a in the fuzzy
set A, speci�ed as x := µA(a) and similarly de�ne y := µB(b). Then a AND b = min(x, y).

Before proceeding further into the intricacies of operations involving fuzzy sets and their correspon-
dence with fuzzy logic, we shall gain familiarity with the types of fuzzy sets commonly employed in
the literature.

2.1 Types of Fuzzy Sets

In the literature, authors commonly distinguish between two (sometimes three) forms of fuzzy sets:

� Type 0: Less commonly referred to explicitly, but still used in publications like Liang et
al. [13]. It commonly refers to the crisp output of a fuzzy Takagi-Sugeno-Kang (TSK) system
where the inherent uncertainty has been resolved into a de�nitive value. TSK will be introduced
in the beginning of Section 2.2 and more concretely explained in Section 2.2.4.

1Page 1182, [11]
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� Type 1: As described in the introduction of Section 2. Each element has a degree of mem-
bership ranging between 0 and 1.

� Type 2: Mendel et al. [14] claim that �There are (at least) four di�erent sources of uncer-
tainties in type-1 FLSs�, where FLS stands for Fuzzy Logic Systems. They identify the �rst
two sources as stemming from the variability in how individuals, potentially experts, interpret
the meanings of fuzzy rule outputs, suggesting that these interpretations should be considered
as distributions. The latter two sources of uncertainty arise from noise a�ecting the inference
data and the training data used for model �tting. The authors convey the concept of fuzzy
MFs, where a new layer of fuzziness is introduced: The uncertainties of the MFs are added on
top of the usual notion of fuzzy sets, yielding more expressive power at the cost of complexity.

For the sake of clarity, this work will focus exclusively on Type-1 fuzzy sets, with the possibility of
extension to broader applications in subsequent research.

2.2 Fuzzy Inference Systems (FIS)

The computational models built upon the principles of fuzzy logic are called Fuzzy Inference Sys-
tems (FIS). What makes these models special is that the inference is built on linguistic variables
with their inherent uncertainties. Thus, every part of the inference (usually If-Then-Statements)
is comprehensible with natural language. Such FIS commonly consist of three parts Fuzzi�cation,
Fuzzy Inference and Defuzzi�cation described in the following subsections.

There are two popular types of FIS: Mamdani and TSK systems as depicted in Figure 2.2. In this
context linguistic variables can be seen as fuzzy variables - the wording should emphasize that no
AI-expertise is required for creating and interpreting inference rules. The key di�erence lies in the
output of the fuzzy inference and third step where Hamam et al. [15] show that both systems have
their (dis-)advantages over the other.

Figure 2.2: A high-level comparison between Mamdani and TSK systems adapted from [16]

Most importantly, the rules of fuzzy inference systems can always be speci�ed in natural language
and hence remain intrinsically interpretable. This will become more clear after examining it in
greater detail with the following example:

Say we want to model a predictor with the task to estimate the �nal competition-placement of a
contestant. This predictor considers the two factors:

� The foating-point number of hours (x) the contestant has spent preparing for the competition.

� The foating-point number of weeks (y) it takes the contestant to complete one level of a
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speci�ed course.

A thorough visualization of the entire Mamdani FIS with respect to this example is given in Figure
2.4. Let us now devote our attention to the three speci�ed parts of a Mamdani system and examine
the image in greater detail:

2.2.1 Fuzzi�cation

The �rst step in the default pipeline of a FIS, called fuzzi�cation, is perhaps the most standardized
one. For Type-1 fuzzy logic it simply means to apply the respective MF µX of the parameter-domain
X to the crisp input values which will yield the degrees of membership with certain sets. Note that
these MFs can be arbitrarily complex and have no restrictions regarding their de�nition except for
the range µX(x) ∈ [0, 1]. As shown in Figure 2.4, this example uses trapezoidal and linear MFs for
simplicity, but as L.A. Zadeh already introduced in the original paper concerning fuzzy sets [10],
these could be very complex non-convex structures if the system designers choose so.

In the context of our example, this could translate to belonging equally to the set �Beginner� and to
�Intermediate� with a degree of 0.45, since 115 hours of practice are assumed for the concrete input.
With more formal notation we express this as µBeginner(115) = 0.45 and µIntermediate(115) = 0.45.
Similarly, since the input for the duration a user would take to �nish a level was assumed to be
supplied 1.5 weeks, we can read o� that the remaining set memberships are: µMedium(1.5) = .0.65
and µSlow(1.5) = 0.35. The memberships for the classes �Fast� and �Professional� are 0.

We can even extend the descriptive capabilities by adding certain linguistic operators called fuzzy

hedges as later shown by L.A. Zadeh [17]. Simple Type 1 Fuzzy hedges typically include the words
�slightly, highly, very, more or less, much�[17]. For instance, the hedge �very� was de�ned by the
author by taking the default MF of the class and squaring it, which will reduce almost all values as
the co-domain has to be in [0, 1]. This can also be seen in Figure 2.3. Type 2 Fuzzy hedges on the

other hand require more descriptive context and are out of scope for this thesis.

0 20 40 60 80 100 120
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0.6

0.8
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Figure 2.3: The very-hedge comparing the MFs �old� and �very old� (adapted from L.A. Zadeh [17])
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2.2.2 Fuzzy Inference (Mamdani)

After successfully obtaining the degrees of membership, we can apply pre-de�ned or generated
fuzzy rules as follows: We use the natural language description of If-Then-Rules but actually apply
something more complex and similar to correlation as was shown by Mendel et al. [6]. In traditional
logic, we have that for the boolean variables x and y. If x is false, then x =⇒ y (read x implies y,
so y is true if x is true) gives no indication with regard to the truth value of y. In fuzzy logic there
exist (at least) 14 di�erent methods to encode the implication operation as Wedding et al. [18] have
outlined.

However, for this work we will adhere to the original FIS approach outlined by Mamdani et al.
[19] which involves limiting the membership value of the consequent by the computed value of the
antecedent. Here, the antecedent refers to the If-Part of the implication, while the consequent denotes
the Then-Part. In the context of fuzzy inference, the consequent describes the desired output for
later defuzzi�cation.

For computing the value of the rule's antecedent we can apply the original ideas behind manipulating
fuzzy sets from L.A. Zadeh [10]. Let a and b be certain domain-speci�c values, which are fuzzi�ed
by some MF µA and µB respectively. The logical operations between these variables in fuzzy logic
are commonly realized as follows:

� AND µA∩B: Multiple possibilities to encode this relationship are commonly applied. Popular
and simple variants are min(µA(a), µB(b)) and µA(a) · µB(b), where K. Wang [16] claims that
the product gives a smoother output (perhaps with respect to di�erentiability) which is said
to be desirable in systems modeling.

� OR µA∪B: max(µA(a), µB(b)).

� NOT µ¬A: Recall that µA ∈ [0, 1]. Thus, we can de�ne negation as 1− µA(a)

Using what we learned before about hedges, we can now see that the rather natural sounding sentence
�If person is professional and very intelligent then performance is good� could quite easily be encoded
into fuzzy logic by software.

2.2.3 Defuzzi�cation (Mamdani)

In fuzzy logic, the concluding step entails transforming the fuzzy output memberships into a singular,
precise value. This crucial process, termed defuzzi�cation, o�ers various methods for execution,
including centroid, center-of-sets, and height, as detailed by Saadaoui et al. [20]. For the purpose of
this discussion, we will focus on the centroid approach, which is also the default method employed
in MATLAB. Essentially, it computes the center of mass beneath the amalgamated membership
function curve, depicted in Figure 2.4.

During fuzzy inference, each rule contributes a fuzzy value of a respective output-setX. The centroid
method considers these contributions cX along with the original fuzzy set de�nitions for the output
sets via the respective MF µX . Mathematically, the minimum between the original MF and the
consequent value is taken, where cX is treated as a constant function: min{µX , cX}. This e�ectively
creates horizontal slices at the height of each consequent, and the centroid is calculated based on
this modi�ed MF which can be seen in Figure 2.4 as the white cross.
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Figure 2.4: Mamdani FIS visualized with center-of-mass defuzzi�cation.

2.2.4 Di�erence to TSK Systems

While the fuzzi�cation step in TSK systems remains consistent, as elucidated by Takagi et al. [21],
the primary distinction lies in the structure of the consequents within the rules. These consequents
typically manifest as polynomial functions, yet they can also be simpler forms such as constants
or linear combinations. Subsequently, these outputs undergo weighting by their corresponding an-
tecedents.

Let the exemplary inputs �Practice Time in Hours� be denoted by h and the input �Level Duration
in Weeks� be denoted by d. An example set of primitive TSK Rules which could replace step 2 and
3 of Figure 2.4 could be structured as follows:

� IF beginner and fast THEN placement = 150− h+ 20 · d

� IF professional or medium THEN placement = 30− h

� · · ·

Since the antecedent of the i-th rule will have the value ai ∈ [0, 1], TSK systems use this as the
weight for the output value (i.e. consequent) of the i-th rule denoted as coutputi .

To compute the output for placement is straightforward, since it is the only output of the TSK
System but in theory there could be multiple, so let us de�ne a set I that contains all indices of
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rules that contain the output placement as I = {1, 2} since we de�ned the �rst two rules to contain
it as output above. Then the value of placement can be computed as follows:

placement =

∑
i∈I ai · cplacementi∑

i∈I ai

Note that the inference step here outputs crisp values and the defuzzi�cation is more about combining
these values fairly. Nonetheless, this additive expansion was proven to be powerful as B. Kosko [22]
has shown that such fuzzy additive systems can

... uniformly approximate any real continuous function on a compact domain to any
degree of accuracy.2

This is a strong theoretical capability, but as Mendel et al. [6] have highlighted, one limited factor
certainly is the explainability, as humans cannot perform p-fold correlations for combining p ∈
N respective antecedents well enough to comprehend the possibly vast resulting rules. Besides,
this assertion aligns with �ndings demonstrated across various architectures, such as Multi-Layer
Perceptrons, as illustrated by G. Cybenko [23] emphasizing its status as a theoretical advantage
rather than a pivotal property.

2.3 Explainable Representations of FIS

In a recent article, Cao et al. [2] have demonstrated four di�erent visually engaging ways of displaying
fuzzy rules and their results:

1. The simple and default way of listing the fuzzy rules in a linguistic manner as If-Then-
Relationships.

2. For TSK-Systems the required antecedents with the MF and consequents can directly be listed
similar to Table 2.1 where a zero-order TSK System (zero-order meaning the rules have constant
outputs) with only one antecedent has its Gaussian MF de�ned by the stated mean µ and
variance σ2. This representation is also suitable for multiple independent consequents/outputs,
where the b-th output is referred to as pb in the table.

3. Visualizing the MF activations, the inference results and the defuzzi�cation process for a
concrete input example which can be performed similar to Figure 2.4.

4. Plotting a surface view for a subset of up to two input dimensions. This is exempli�ed in
Figure 2.5 and comes with the disadvantages of a three-dimensional plot (occlusion, distortion
from the perspective, etc.) but gives a clear and intuitive overview.

Table 2.1: Example TSK with Gaussian MF, pb as b-th consequent (adapted from [2])

Antecedent parameter 1 Consequent parameters

Rule 1 µ = 0.61;σ2 = 0.5 p0 = 0.589
Rule 2 µ = 0;σ2 = 1 p0 = 0.195
... ... ...

Rule k µ = 12;σ2 = 4 p3 = 0.613

2Abstract, [22]
3Image source: https://github.com/tenaci-hand-grip/fuzzy-visualization, accessed on April 3rd, 2024

https://github.com/tenaci-hand-grip/fuzzy-visualization
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Figure 2.5: Example surface plot from an open-source fuzzy inference system3

Certainly, this compilation of potential visualizations is not comprehensive, and there exist a myriad
of methods for generating domain-speci�c plots using the data derived from fuzzy inference systems.
The above listed methods were provided solely to exemplify popular visualization techniques and
are by no means exhaustive.
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3 Fuzzy Rule-Based Regression

Now the focus transitions from having a single inference system with the goal of correctly predicting
certain values to having a set of inference systems, each with certain rules to evaluate which (set of)
rules are the most important for explaining a given dataset.

This implementation was adapted from the Section �Regression for Rule Selection� from Cichy et al.
[7]. Let g1, . . . , gk : Rd → R for some �xed number of inference systems k ∈ N and a �xed number
of input dimensions d ∈ N denote a set of fuzzy inference systems as shown in Section 2.2 where
each arbitrary gi can be as simple as desired and the type of inference system is arbitrary as long as
the �nal output is a crisp value. There might even only be one rule with one variable as antecedent
in this inference system. In the context of this task, we call each gi a basis function for the linear
system we will specify shortly. Then we can form a linear combination of these individual basis
functions as follows:

Let xi ∈ Rd be the i-th input vector (data sample) with d dimensions, assume there are n such
samples to train on and let α0, . . . , αk ∈ R be the coe�cients to learn. The output for the data
sample xi can be modeled with a linear system as follows:

f(xi, α0, α1, . . . , αn) = α0 + α1g1(xi) + · · ·+ αkgk(xi) ∀i ∈ 1, . . . , n (3.1)

Note that the coe�cients α0, . . . , αk are independent of the i-th input, although the input vector x
changes. We call this a linear combination as the model is linear in its parameters which are the
coe�cients. All inference systems gi are assumed to be constant in solving this problem and only
depend on the input.

To �nd the best coe�cients, the authors used ordinary least squares as the optimization criterion
which sums the squared deviation of the model output to the respective ground truth label yi. This
sum for all data samples will be denoted as Sum of Squared Errors (SSE). So the following expression
should be minimized for all data points:

SSE =
n∑

i=1

(yi − f(xi, α0, α1, . . . , αn))
2 (3.2)

After performing signi�cance testing by leaving out one basis function and checking if the perfor-
mance deviation is statistically signi�cant (see Section 3.2), the above coe�cients can be interpreted
as the importance of the corresponding rules.

The above minimization problem is easy to state but solving it requires some more intricate thoughts.
Let us now discover how such a linear regression least-squares problem can be solved.

3.1 Analyzing Resolution Methodologies for General Linear Least Squares

Press et al. [24] provided clear approaches for getting potential solutions for such and more sophis-
ticated optimization problems. Hence, for minimizing Equation (3.2), we will �rst introduce the
standard method of using the so-called normal equations. Before we explore this method, it is vital
to notice that the described method only sets the �rst derivative to zero, which is only a necessary
condition for an optimum but not su�cient. If (few) �nitely many potential minimizers are returned
from this method, the corresponding function values can be compared to �nd the best one. However,
in more complex settings with intricate non-linear basis functions, �nding a global minimum might
require the use of more advanced methods.
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3.1.1 Solving With Normal Equations

We will �rst extend our notation for convenience in the proceeding parts: gab will now denote the
output of the a-th basis function for sample with index b. This way we can set the derivative of the
overall SSE to zero in a more compact expression, which is shown the following derivations.

To get the potential solutions for this optimization problem with calculus, we take the derivative
with respect to αj for all j ∈ {0, 1, . . . , k} and since there are k+1 coe�cients of this linear problem
to be found, we will �nd k + 1 constraints. We handle this in two distinct cases: If j ̸= 0 we get:

∂SSE

∂αj
= −2

n∑
i=1

((yi − α0 − α1g1i − · · · − αkgki)gji) = 0

Which can be rewritten into the following constraint for j ∈ {1, 2, . . . , k}:
n∑

i=1

yigji = α0

n∑
i=1

gji + α1

n∑
i=1

g1igji + · · ·+ αk

n∑
i=1

gkigji

For j = 0, that means we want to compute the intercept a0, we get the slightly simpler necessary
condition:

∂SSE

∂a0
= −2

n∑
i=1

(yi − α0 − α1g1i − · · · − αkgki) = 0

Similarly, we get the constraints:

n∑
i=1

yi = nα0 + α1

n∑
i=1

g1i + · · ·+ αk

n∑
i=1

gki

These equations can be nicely assembled into a matrix equation, which in this context is known as
the normal equation

GTGa = GTy

where

� G is the matrix with the i-th row of the form (1, g1i, . . . , gki),

� a is the vector of coe�cients (α0, α1, . . . , αk)
T ,

� y is the vector of target values (y1, y2, . . . , yn)
T .

Note: One should keep in mind that the matrix G can be fully pre-computed, since we evaluate the
fuzzy inference j at the sample i which has to be a real number by our de�nition of fuzzy inference
systems.

So if we can �nd a we have achieved our goal. To perform this task, one can re-arrange the above
equation and solve the following system:

a = (GTG)−1GTy
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This assumes that the resulting square matrix (GTG) is invertible. If this is the case, we will obtain
a unique solution for a and if we construct this problem in software nicely, we can ensure that the
matrix is invertible: If we force G to be full-rank, that means that, depending on the shape of
G, all the columns or all the rows have to be linearly independent, then GTG will have linearly
independent columns as well by the de�nition of matrix multiplication as being the inner-product
of rows and columns.

Since we commonly expect G to have more rows than columns (more samples than fuzzy inference
systems), one can check for redundancies/copies as a pre-processing step in the columns and drop
such inference systems before applying the optimization. Nonetheless, many solutions might exist
(as described in Section 3.1) and should be tried to �nd the true global optimum.

3.1.2 Solving With QR-Decomposition

While the matrix inversion in Section 3.1.1 provides a more direct method to �nd the least squares
solution to the said optimization problem, this approach may not always be numerically stable,
especially when the matrix GTG is (close to) singular or ill-conditioned. An alternative, more
robust method involves the use of the QR-Decomposition as was also highlighted by Press et al.
[24].

QR-Decomposition is a matrix factorization technique that decomposes a matrix into a product of
an orthogonal matrix Q and an upper triangular matrix R. Speci�cally, for our matrix G ∈ Rn×m

we can write:
G = QR

where Q is an n × n orthogonal matrix (by de�nition QTQ = I, the identity matrix) and R is an
n×m upper triangular matrix. Here, n is the number of observations and m = k+1 is the number
of coe�cients including the intercept. Furthermore, we assume that n ≫ m since more samples than
basis functions are expected for most use-cases.

The similar system we aim to solve here (with the same variables de�ned in Section 3.1.1), Ga = y,
can be rewritten using QR-Decomposition as:

QRa = y

By multiplying both sides by QT , we leverage the orthogonality of Q (QTQ = I) to get:

Ra = QTy

Since R is an upper triangular matrix, this system can be solved e�ciently through back sub-
stitution, avoiding the numerical instability issues that can arise from directly inverting GTG.
Nonetheless, we still have to be careful to choose a numerically stable algorithm for computing the
QR-Decomposition, where a prominent example would be so-called Householder-Transformations as
outlined by Golub et al. [25].

3.2 Testing Signi�cance Levels of the Coe�cients

In the last step of the fuzzy-approximation publication by Cichy et al. [7] a statistical test was
applied to �nd which basis functions are not statistically signi�cant in their contribution and could
be omitted without impacting the model's predictive power. As was con�rmed by one of the authors
after a personal inquiry, this test was most likely a Likelihood Ratio Test (LRT).
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The LRT o�ers a statistical metric for the said evaluation, where we will compare two models: the
full model, which includes all predictors (basis functions), and a reduced model, from which one or
more predictors are excluded. The null hypothesis (H0) can be phrased as a certain basis function
gi not being necessary to maintain the descriptive power. If the test statistic Λ from Equation
3.3 exceeds a critical value Λcrit, we reject H0, which certainly means that gi is necessary from a
statistical perspective (up to a certain signi�cance level). If we cannot reject H0, we obtain no formal
statistical knowledge for being able to remove gi without reducing the predictive power of the model
from this test, but we will use it as an informal indication in this scenario.

The LRT statistic for this ordinary least squares scenario is de�ned as follows:

Λ = 2(log(Lfull)− log(Lreduced)) (3.3)

where Lfull and Lreduced are the likelihoods of the full and reduced models, respectively. The value
of the test statistic Λ approximately follows a χ2-distribution as shown by Chvosteková et al. [26]
where we adopt the assumption that the errors are normally distributed. The degrees of freedom for
this distribution are determined by the di�erence in the number of parameters between the full and
reduced models. For instance, if the reduced model has one fewer parameter than the full model,
the degree of freedom would equal one.

It should be noted that popular regression libraries like statsmodels in Python typically make as-
sumptions for the estimation of the likelihoods, as they frequently assume Gaussian distributions on
the error distributions as an approximation for the underlying true error distribution. This would
then result in a maximum likelihood estimation for the variance of σ2 = SSE/n, where SSE is the
sum of the squared errors and n is the number of tested samples as can be examined in more detail
in the work by Lehmann et al. [27] in Chapter 12.4.1. Let us quickly derive the Ordinary Least
Squares Likelihood with the assumed Gaussian distribution by using the tools provided by Lehmann
et al. [27]:

Let y = (y1, y2, . . . , yn) be the vector containing all labels, α = (α0, α1, . . . , αk) be the vector
containing all parameters and X be the matrix containing the rows as (1, g1i, g2i, . . . , gki) where gai
represents the a-th fuzzy inference system applied on sample i. Then for some assumed variance σ2

under the assumption of homoscedasticity, we get the following likelihood for the linear regression
model parameterized by α:

L(α, σ2) =
1

(2πσ2)
n
2

exp

(
− 1

2σ2
(y −Xα)⊤(y −Xα)

)

Taking the natural logarithm of the above expression and applying the corresponding calculation
rules:

logL(α, σ2) = −n

2
log(2πσ2)− 1

2σ2
(y −Xα)⊤(y −Xα)

Now, we notice that the last term contains the SSE and simplify:

logL(SSE, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
SSE

Finally, we substitute the above MLE of the variance σ2 = SSE/n and see that the resulting formula
for the log likelihood of a model under the given assumptions is:

logL(SSE, n) = −n

2
log(2π)− n

2
log

(
SSE

n

)
− n

2
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The computed Λ value is then compared to a critical value from the χ2-distribution, given a signi�-
cance level (usually 0.05) and as stated above, an indication of being able to prune gi is given. This
also improves the interpretability of the underlying model by being more overseeable as fewer basis
functions are used.
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4 Conclusion and Acknowledgements

In this exploration of fuzzy logic's ability to supply explanations, we started with its simple mathe-
matical concepts to address vagueness and imprecision. This lead us to unveiling the inner-workings
behind the linguistic formulations provided by FIS to improve interpretability of AI systems and
data generation processes. We have observed that FIS are inherently explainable models which can
mimic human reasoning regarding certain tasks on a high level by careful (partially manual) model-
ing of such processes. Therefore, fuzzy logic is a promising candidate for providing models in critical
domains like healthcare, �nance or cybersecurity.

It is vital to recognize that our exploration has merely scratched the surface of the possibilities which
modern fuzzy-based systems provide. Di�erent established techniques such as Forward Step-Wise
Regression (as demonstrated by Mendel et al. [6]) and Adaptive Neuro-Fuzzy Inference Systems
(as outlined by J.R. Jang [28]) exemplify two popular of many methods and the high degree of
sophistication in this �eld of study. By their intrinsic structure, such systems also have outstanding
capabilities in explaining/unveiling certain relationships or concrete biases in large datasets.
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5 Acronyms

AI Arti�cial Intelligence

DL Deep Learning

FIS Fuzzy Inference Systems

LRT Likelihood Ratio Test

MF Membership Function

ML Machine Learning

SSE Sum of Squared Errors

TSK Takagi-Sugeno-Kang

XAI eXplainable Arti�cial Intelligence
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