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Brief Introduction to LNNs

• Neural networks combined with fuzzy logic (Riegel et al., 2020)

• Intervals for degree of truth (Shakarian et al., 2023)

• A-priori defined knowledge base in propositional logic or first order logic (Riegel et al., 2020)

• Explainable outputs (Shakarian et al., 2023)
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Taken from Shakarian et al., 2023



Theoretical Foundations
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Weighted Real-Valued Logic
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truefalse

Boolean Logic

(Riegel et al., 2020)



Weighted Real-Valued Logic
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(Riegel et al., 2020)

truefalse uncertain

1 – α α0 1

0.5 < α ≤ 1



Weighted Real-Valued Logic
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(Riegel et al., 2020)

Each formula is assigned two truth bounds L, U ∈ [0, 1].

Every neuron is in one of four primary states:

true

[α, 1]Lower (L)

[α, 1]Upper (U)

truefalse uncertain

1 – α α0 1L U



Weighted Real-Valued Logic
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(Riegel et al., 2020)

Each formula is assigned two truth bounds L, U ∈ [0, 1].

Every neuron is in one of four primary states:

falsetrue

[0, 1 – α][α, 1]Lower (L)

[0, 1 – α][α, 1]Upper (U)

truefalse uncertain

1 – α α0 1UL



Weighted Real-Valued Logic
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(Riegel et al., 2020)

Each formula is assigned two truth bounds L, U ∈ [0, 1].

Every neuron is in one of four primary states:

uncertainfalsetrue

[0, 1 – α][0, 1 – α][α, 1]Lower (L)

[α, 1][0, 1 – α][α, 1]Upper (U)

truefalse uncertain

1 – α α0 1UL



Weighted Real-Valued Logic
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(Riegel et al., 2020)

Each formula is assigned two truth bounds L, U ∈ [0, 1].

Every neuron is in one of four primary states:

contradictionuncertainfalsetrue

L > U
[0, 1 – α][0, 1 – α][α, 1]Lower (L)

[α, 1][0, 1 – α][α, 1]Upper (U)

truefalse uncertain

1 – α α0 1U L



Logical Operators

Weighted generalizations of Łukasiewicz operators

• „AND“

 ஒ ໆ 𝑥௜
⊗௪೔

௜∈ூ

= 𝑓 β − ෍ 𝑤௜ 1 − 𝑥௜

௜∈ூ

𝐼… input set
𝑓: ℝ → 0,1 , 𝑓 1 − 𝑥 = 1 − 𝑓 𝑥

β ≥ 0, 𝑤௜ ≥ 0, 𝑥௜ ∈ 0,1
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(Shakarian et al., 2023)



Logical Operators

Weighted generalizations of Łukasiewicz operators

• „AND“

• „OR“

 ஒ ໄ 𝑥௜
⊕௪೔

௜∈ூ

= 𝑓 1 − β + ෍ 𝑤௜𝑥௜

௜∈ூ

 

𝐼… input set
𝑓: ℝ → 0,1 , 𝑓 1 − 𝑥 = 1 − 𝑓 𝑥

β ≥ 0, 𝑤௜ ≥ 0, 𝑥௜ ∈ 0,1
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(Shakarian et al., 2023)



Logical Operators

Weighted generalizations of Łukasiewicz operators

• „AND“

• „OR“

• „IMPLIES“

 ஒ 𝑥⊗௪ೣ → 𝑦⊕௪೤ = 𝑓 1 − β + 𝑤௫ 1 − 𝑥 + 𝑤௬𝑦

𝐼… input set
𝑓: ℝ → 0,1 , 𝑓 1 − 𝑥 = 1 − 𝑓 𝑥

β ≥ 0, 𝑤௜ ≥ 0, 𝑥௜ ∈ 0,1
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(Shakarian et al., 2023)



Logical Operators

Weighted generalizations of Łukasiewicz operators

• „AND“

• „OR“

• „IMPLIES“

• „NOT“
¬x = 1 − x

x ∈ 0,1
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(Riegel et al., 2020)



Syntax Tree

• Set of logical sentences (knowledge base) specified a-priori (propositional logic or 
first order logic)

• Syntax tree of formulas 

• Nodes are neurons

• Truth bounds [L, U] for all neurons
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023

„OR“„AND“



Activation Functions

Neurons corresponding to logical operators

• Monotonicity required

• (Can be) related via De Morgan Laws

• (Can be) commutative, associative 

Logistic Function

𝑓 𝑥 =
1

1 + 𝑒ିହ ଶ௫ିଵ
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023, and Riegel et al., 2020



Activation Functions

Neurons corresponding to logical operators

• Monotonicity required

• (Can be) related via De Morgan Laws

• (Can be) commutative, associative 

ReLU1 Function

𝑓 𝑥 = max(0,min(1,x))
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023, and Riegel et al., 2020



Activation Functions

Neurons corresponding to logical operators

• Monotonicity required

• (Can be) related via De Morgan Laws

• (Can be) commutative, associative 

Tailored Activation Function
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023, and Riegel et al., 2020



Activation Functions

Neurons corresponding to atoms

• Aggregation of truth values

Return [Lnew, Unew] = [max(L1, L2), min(U1, U2)]
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(Riegel et al., 2020)

truefalse uncertain

1 – α α0 1U2L1L2 U1

Example for atom y:
• (x1 ⊗ x2) → y: [L1, U1]
• (x2 ⊗ x4) → y: [L2, U2]



Activation Functions

Neurons corresponding to atoms

• Aggregation of truth values

Return [Lnew, Unew] = [max(L1, L2), min(U1, U2)]
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(Riegel et al., 2020)

truefalse uncertain

1 – α α0 1U2L2L1 U1

Lnew Unew

Example for atom y:
• (x1 ⊗ x2) → y: [L1, U1]
• (x2 ⊗ x4) → y: [L2, U2]

y: [Lnew, Unew] = [L2, U1]



Activation Functions

Neurons corresponding to atoms

• Aggregation of truth values

Importance weighting

• Use the learned weights of the 
operator neurons

Lnew = max(0, min(1, 2L1 + 0.5L2))

Unew = max(0, min(1, 1 – 2(1 – U1) + 0.5(1 – U2)))
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(Riegel et al., 2020)

Example for atom y:

• 𝑥ଵ
⊗ଷ

→ 𝑦⊕ଶ: [L1, U1]

• 𝑥ଵ
⊗ଵ

→ 𝑦⊕଴.ହ : [L2, U2]



Bidirectional Inference

• Multiple passes over neurons until convergence (in finite amount of steps)
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023

„OR“„AND“



Bidirectional Inference

Upward pass

• Compute the truth bounds of a formula
based on its subformulas

• Start from atoms, propagate upwards
towards complex formulas
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023

„OR“„AND“



Bidirectional Inference
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Adapted from Riegel et al., 2020

„NOT“

„OR“



Bidirectional Inference

Downward pass

• Compute the truth bounds of
subcomponents based on the formula

• Logical inverses of upward computations
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(Riegel et al., 2020)

Adapted from Shakarian et al., 2023

„OR“„AND“



Bidirectional Inference
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Adapted from Riegel et al., 2020

„NOT“

„OR“



Training

• Possible via backpropagation

min
஻,ௐ

𝐸 𝐵, 𝑊 + ෍ max(0, 𝐿஻,ௐ,௞ − 𝑈஻,ௐ,௞)
௞∈ே

• No consistent knowledge base needed

• Can’t enforce all constraints in the
knowledge base
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(Riegel et al., 2020)

„OR“„AND“
e.g. MSE

contradiction loss

Adapted from Shakarian et al., 2023
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trainable
parameters



Training

• Possible via backpropagation

min
஻,ௐ

𝐸 𝐵, 𝑊 + ෍ max(0, 𝐿஻,ௐ,௞ − 𝑈஻,ௐ,௞)
௞∈ே

Workflow

1. Construct knowledge base

2. Pass samples with truth bounds to the model

3. Perform inference until convergence

4. Compute loss on outputs and backpropagate
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Adapted from Shakarian et al., 2023, and Riegel et al., 2020

(Riegel et al., 2020)

e.g. MSE
contradiction losstrainable

parameters



Tool Demo
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Generated with DALL-E

Based on https://github.com/IBM/LNN/tree/master



Real-World Applications
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Taken from ibm.com

Almost exclusively published by
IBM as they do not provide a
robust library (perhaps internal)
and proper documentation



Entity Linking with LNN-EL
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(Jiang et al., 2020)

• Use rule-based disambiguation models 
from human experts

• Features: 
◦ Non-embedding based (Jaccard, etc.)
◦ Embedding based (BERT, prior EL 

methods)

• We have a knowledge graph  LNN

„List all boardgames 
by GMT“

Entity Extraction

Entity Disambiguation:

Adapted from Jiang et al., 2020



Entity Linking with LNN-EL
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(Jiang et al., 2020)

Adapted from Jiang et al., 2020

Old formulation



Entity Linking with LNN-EL
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(Jiang et al., 2020)

• Advantages of LNN-EL: (Jiang et al., 2020) 

◦ Interpretable
◦ Extensible structure

▪ Also with embeddings
▪ Rule-designers refine the model more informedly

State of the art performance, competitive 
to black-box models
◦ Transferable across datasets from the same domain

without finetuning
Figure adapted from Jiang et al., 2020

(= [0.26,0.26])



LNNs in Reinforcement Learning

• Augmenting Reinforcement Learning agents with 
rules about the world ([A] Kimura et al., 2021)

• LNN Shielding and/or Guiding ([B] Kimura et al., 2021)

◦ Contradiction Loss

• Speed up the agent‘s learning ([B] Kimura et al., 2021)

• Hand-crafted rules about “TextWorld Commonsense“ 
(TWC) (Murugesan et al., 2021)

◦ Text-based adventures
◦ E.g., “if the agent is carrying an item, it cannot also 

be in that item”
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Adapted from [B] Kimura et al., 2021



Knowledge Base Completion
• First order logic is useful for inferring missing facts

• Instead: Mine rule triplets <h,r,t>
o Contrastive Learning

• Rule-based methods: 
Interpretable

• Embedding-based:
High accuracy 
e.g., ConvE (Dettmers et al., 2017)

• Real-world can better be mapped with degrees of truth

• Basically: Enumerate all paths (up to constraints) and weight them; 
Time-Constraints…  Details after the presentation
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Adapted from [A] Sen et al., 2022

([A] Sen et al., 2020)

Citizen of?



Knowledge Base Completion
• Allows for learning from real-world, noisy data

Datasets:

• Major Rule-based approaches:
o Edge-based (EB):

o Individual relations
o Generalizes better

o Path-based (PB):
o Entire paths
o Preserve order and context

• Hence, EB- and PB-LNN were introduced

35

([A] Sen et al., 2020)

Adapted from [A] Sen et al., 2022

Train Test Results



Knowledge Base Completion
• Path Based LNN even beats embedding based methods 

(metric: Mean Reciprocal Rank and Hits)
◦ With and without inducing graph embeddings
◦ Best performance on all tested datasets, state of the art (even similar “speed”)
◦ Training with rank loss (positive and negative examples, no consistency enforcement)

• Inner-Workings:
◦ Each relation path <h,r,t> is a conjunction of relations
◦ Disjunction over these conjunctions (only one path must hold)
◦ Count how many paths can be established (brute-force up to length, 𝑃௥ ℎ, 𝑡 ) from ℎ

to 𝑡 and how the model weights them 𝜙௪(𝑒௥)

36

([A] Sen et al., 2020)



Further Applications

• Decision support and planning (Hoang, 2022)

◦ Could sadly only access the abstract
◦ Builds on a standard RL or MDP solver (learn a policy)
◦ Train LNN based on the obtained policy
◦ Especially: Supply-Chain optimization

• Inductive Logic Programming (ILP) for noisy data ([B] Sen et al., 2022)

◦ Task: Learn new first order rules to explain the data
◦ Still “primitive“ (yet state of the art performance on the given datasets)
◦ Applicability of many rule templates (User-Guided)
◦ Neural selection of predicates
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Strengths and Weaknesses
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Taken from https://de.m.wikipedia.org/wiki/Datei:Kahoot_Logo.svg



Strengths of LNNs

• Integration of symbolic and subsymbolic learning

• No need for (perfect) consistency in knowledge base

• Truth intervals approximate confidence intervals

• Explainable outputs

• Open world reasoning: Nodes are initialized as uncertain (truth bounds: [0, 1]) rather 
than false

40

(Shakarian et al., 2023)

✓ LNNs Logic Tensor Networks

✓ LNNs Logic Tensor Networks

✓ LNNs Ontological Networks

✓ LNNs Logic Tensor Networks



Weaknesses of LNNs

• A-priori definition of the knowledge base (knowledge bottleneck) (Shakarian et al., 2023)

• Not applicable if constraints need to be satified at all times (Shakarian et al., 2023)

• No interpretable combination with perceptual networks possible (yet)
(Shakarian et al., 2023)

• Multiple complex mechanisms needed (bidirectional inference, backpropagation)
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Future Work

42



Future Work
• Integration with perception: symbol grounding (Shakarian et al., 2023)

◦ How the symbols get their meaning from raw data
◦ E.g., what is this CNN output neuron?

• Enforcing hard constraints for consistency (Shakarian et al., 2023)

◦ Requirement for e.g., robotics, aerospace
◦ Only hypothesized in the original paper, no implementations

• Automated knowledge learning
◦ Learn knowledge base automatically – and make it more dynamic
◦ Starts in Neuro-Symbolic ILP ([B] Sen et al., 2022)
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Generated with DALL-E

Generated with GPT-4o image generation 



Future Work
• Documentation (Our opinion)

◦ Especially Riegel et al., 2020 
◦ Had to reverse-engineer the GitHub repository

https://github.com/IBM/LNN
▪ Also half-finished (just like docs Web-pages)
▪ Developments stopped 2 years ago

• More benchmarks for neurosymbolic architectures (Ott et al., 2023)

◦ Example: Interactive fiction
▪ “TextWorld Commonsense“ Environment (Murugesan et al., 2021)
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https://ibm.github.io/LNN/education/tutorials/tutorials.html, 
retrieved on Mach 20th, 2025
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Adapted from Shakarian et al., 2023

„OR“„AND“

Recap


