ADVERSARIAL MACHINE LEARNING

Martin Dallinger martin.dallinger@outlook.com

06.06.2024

ADVERSARIAL MACHINE LEARNING

Taken from [2]

Adversary: Opposing training

Adversarial Attacks/Examples

Taken from [3]

Adversary: Fool models (malicious) with small perturbations

[2] https://sthalles.github.io/intro-to-gans/

[3] Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification; DOI: 10.1109/CVPR.2018.00175

QUICK CATEGORIZATION [4]

■ White-Box:

- Known model structure and weights
- □ Opposite: Black-Box

Label-Targeted:

- Determine precise class to misclassify to
- □ Opposite: Untargeted

 $+.007 \times$

=

x "panda" 57.7% confidence

 $\begin{array}{l} \operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},\boldsymbol{y}))\\ \text{``nematode''}\\ 8.2\% \ \mathrm{confidence}\end{array}$

Adapted from [1]

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572

[4] Rosenberg et al., Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain; DOI: 10.1145/3453158

OTHER ATTACKS

- Data Poisoning [6]
 Change training data (labels)
- Model Poisoning [6]
 Example: Federated learning

(a) Proximity according to Euclidean distance

(b) Proximity according to some other metric

- "Configuration Poisoning"
 - Lesser-known
 - □ Commonly modify distance metrics
 - □ Relaxation of triangle inequality for clustering (pseudometric) [5]

[5] Rass et al., Metricizing the Euclidean Space towards Desired Distance Relations in Point Clouds; DOI: 10.48550/arXiv.2211.03674
[6] Fang et al., Local Model Poisoning Attacks to Byzantine-Robust Federated Learning; DOI: 10.5555/3489212.3489304
[15] Image source: Goodfellow et al., https://github.com/cleverhans-lab/cleverhans

Taken from [5]

NOVEL METHODS FOOL GPT4-V/BARD

- Simple manipulated stop-signs did not work for these models...
- But recent technique (Ensembles, novel "Common Weakness" Attack") manage to fool popular models [9] - 06.04.2024, GPT4-V
 - □ Cat:

Hand holding mobile phone:

BUT: Gemini resisted! - 06.04.2024

[9] Chen et al., Rethinking Model Ensemble in Transfer-Based Adversarial Attacks; DOI: 10.48550/arXiv.2303.09105

NOT LIMITED TO IMAGES

- Different distributions to training in general!
 - □ Antivirus / EDR Systems [10]
 - □ Firewalls (even black-box: [11])
- Spaces of adversarial examples
 - □ Adding randomness stays adversarial
- Already problematic for simple networks (logistic regression) [1]
 - □ Not due to overfitting!
 - □ Also: Regularization (dropout, L2-reg, …) does not help

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572
[10] Jakhotiya et al., Adversarial Attacks on Transformers-Based Malware Detectors; DOI: 10.48550/arXiv.2210.00008
[11] Usama et al., Black-box Adversarial Machine Learning Attack on Network Traffic Classification; DOI: 10.1109/IWCMC.2019.8766505

TRANSFERABILITY

DNN: Deep Neural Networks LR: Logistic Regression SVM: Support Vector Machines DT: Decision Trees kNN: k Nearest Neighbours Ens.: Ensembles (not precisely stated...)

- Cross-Technique Transferability using "Substitute Models"
- Even Deep- vs. Non-Deep-Learning!
- Substitute model might help to evade AI-firewalls [11]
 - Difficulty lies in valid packet construction (CRC)

	- 1						
ce Machine Learning Technique	DNN	38.27	23.02	64.32	79.31	8.36	20.72 -
	LR-	6.31	91.64	91.43	87.42	11.29	44.14 -
	SVM	2.51	36.56	100.0	80.03	5.19	15.67 -
	DT	0.82	12.22	8.85	89.29	3.31	5.11 -
Sour	kNN	11.75	42.89	82.16	82.95	41.65	31.92 -
	L	DNN	LR Target M	SVM	DT earning T	kNN	Ens.
	_		Target i		carning i	echnique	

Adversarial sample transferability taken from [13]

[11] Usama et al., Black-box Adversarial Machine Learning Attack on Network Traffic Classification; DOI: 10.1109/IWCMC.2019.8766505
 [13] Papernot et al., Transferability in Machine Learning: from Phenomena to Black-Box Attacks Using Adversarial Samples;
 DOI: 10.48550/arXiv.1605.07277

BASIC ATTACK STRATEGIES [12]

- Fast Gradient Sign Method (FGSM)
 - □ Essentially gradient ascent
 - □ Simple and effective
- Basic Iterative Method (BIM)
 - □ Multiple FGSM
 - \Box Clipping to stay in ϵ -Neighborhood
- L-BFGS Method
 - □ Box-constrained optimization problem
 - Quasi-Newton method
 - Many more complex and recent techniques [9]

 $\begin{array}{c} x: \text{ Input vector} \\ \epsilon: \text{ Step-Size} \\ \nabla_{\!x}L(x,\Theta): \text{ Loss wrt. Input} \\ C(x): \text{ Classifier parameterized by weights } \Theta \\ l: \text{ Some different class than intended} \end{array}$

$$\boldsymbol{x}^* = \boldsymbol{x} + \boldsymbol{\epsilon} \, \nabla_{\boldsymbol{x}} \, \boldsymbol{L}(\boldsymbol{x}, \boldsymbol{\Theta})$$

minimize $||x_0 - x||_2^2$ such that C(x) = lwhere $x \in [0, 1]^p$

[9] Chen et al., Rethinking Model Ensemble in Transfer-Based Adversarial Attacks; DOI: 10.48550/arXiv.2303.09105
 [12] Papernot et al., Technical Report on the Cleverhans v2.1.0 Adversarial Examples Library; DOI: 10.48550/arXiv.1610.00768

DEFENSES [10]

- Adversarial training: Also improves performance [1]
- Forcing black box attacks
- Ensembles [13] of simpler architectures if possble (Random Forests)
 - □ No gradients
 - □ Or more non-linear architectures: RBF [1]
- Reduce feature space [1]
- Certified robustness [14]

Test with <u>https://github.com/cleverhans-lab/cleverhans</u>

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572

[10] Jakhotiya et al., Adversarial Attacks on Transformers-Based Malware Detectors; DOI: 10.48550/arXiv.2210.00008

[13] Papernot et al., Transferability in Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial Samples; DOI: 10.48550/arXiv.1605.07277

[14] Chen et al., Certifying Robustness of Neural Networks With a Probabilistic Approach; DOI: 10.48550/arXiv.1812.08329

REFERENCES [1-4]

- [1] Goodfellow, I.J., Shlens, J., & Szegedy, C. (2014). Explaining and Harnessing Adversarial Examples. *CoRR*, *abs*/1412.6572.
- [2] Image source: <u>https://sthalles.github.io/intro-to-gans/</u>
- [3] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., & Song, D.X. (2018). Robust Physical-World Attacks on Deep Learning Visual Classification. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1625-1634.
- [4] Rosenberg, I., Shabtai, A., Elovici, Y., & Rokach, L. (2021). Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain. ACM Computing Surveys (CSUR), 54, 1 - 36.

REFERENCES [5-8]

- [5] Rass, S., König, S., Ahmad, S., & Goman, M. (2022). Metricizing the Euclidean Space towards Desired Distance Relations in Point Clouds. ArXiv, abs/2211.03674.
- [6] Fang, M., Cao, X., Jia, J., & Gong, N.Z. (2019). Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. USENIX Security Symposium.
- [7] Su, J., Vargas, D.V., & Sakurai, K. (2017). One Pixel Attack for Fooling Deep Neural Networks. *IEEE Transactions on Evolutionary Computation*, 23, 828-841.
- [8] Xu, K., Zhang, G., Liu, S., Fan, Q., Sun, M., Chen, H., Chen, P., Wang, Y., & Lin, X. (2019). Adversarial T-Shirt! Evading Person Detectors in a Physical World. European Conference on Computer Vision.

REFERENCES [9-12]

- [9] Chen, H., Zhang, Y., Dong, Y., & Zhu, J. (2023). Rethinking Model Ensemble in Transfer-based Adversarial Attacks. *ArXiv*, abs/2303.09105.
- [10] Jakhotiya, Y., Patil, H., & Rawlani, J. (2022). Adversarial Attacks on Transformers-Based Malware Detectors. *ArXiv, abs/2210.00008*.
- [11] Usama, M., Qayyum, A., Qadir, J., & Al-Fuqaha, A. (2019). Black-box Adversarial Machine Learning Attack on Network Traffic Classification. 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), 84-89.
- [12] Papernot, et al. (2016). Technical Report on the CleverHans v2.1.0 Adversarial Examples Library. arXiv: Learning.

REFERENCES [13-15]

- [13] Papernot, N., Mcdaniel, P., & Goodfellow, I.J. (2016). Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples. *ArXiv*, *abs*/1605.07277.
- [14] Weng, T., Chen, P., Nguyen, L.M., Squillante, M.S., Oseledets, I., & Daniel, L. (2018). PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach. *ArXiv*, abs/1812.08329.
- [15] Image source: Goodfellow et al., https://github.com/cleverhanslab/cleverhans

CONCLUSION

- Be aware of (infinitely many) adversarial examples
 - $\hfill\square$ Especially black box and transfer
- Harden/Test your systems (cleverhans)
- Cat and mouse game

Questions?

Get in touch: Martin Dallinger, martin.dallinger@outlook.com

APPENDIX

06.06.2024

CERTIFIED ROBUSTNESS [14]

- "Small changes" should have the same class
- Certifiability to some epsilon-pertubation
- Using Lipschitz constrained networks

Lipschitz-Continuity as shown in https://www.geogebra.org/m/bnsymjxh

Image taken from [15]

- Problem: Measure distance
 - Semantic meaning (distinguish 8 vs 0 visually)

[14] Chen et al., Certifying Robustness of Neural Networks With a Probabilistic Approach; DOI: 10.48550/arXiv.1812.08329
 [15] Nick Frosst, Certifiable Robustness to Adversarial Attacks (Toronto ML Summit); https://www.youtube.com/watch?v=OfSxYqU-6s0&t=242s

ADVERSARIAL T-SHIRT AGAINST YOLO-V2 [8]

Taken from [8]

[8] Xu et al., Adversarial T-shirt! Evading Person Detectors in A Physical World; DOI: 10.1007/978-3-030-58558-7_39

NOT UNIQUE/HARD TO FIND

Table 1: Sampl	e of physical ad	AllConv	NiN	VGG				
Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)	-	at the	A.
5' 0°	STOP			STOP	STOP	SHIP CAR(99.7%)	HORSE FROG(99.9%)	DEER AIRPLANE(85.3%)
5′ 15°	STOP		STOP	STOP	STOP	HORSE DOG(70.7%)	DOG CAT(75.5%)	BIRD FROG(86.5%)
10' 0°	500		STOP	STOP	STEP	CAR AIRPLANE(82.4%)	DEER DOG(86.4%)	CAT BIRD(66.2%)
10′ 30°				STOP	STDP	DEER AIRPLANE(49,8%)	BIRD FROG(88.8%)	SHIP
40' 0°	In the second second						CLIB	
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%	DOG(88.0%)	AIRPLANE(62.7%)	DOG(78.2%)

Taken from [3]

[3] Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification; DOI: 10.1109/CVPR.2018.00175
 [7] Su et al., One Pixel Attack for Fooling Deep Neural Networks; DOI: 10.48550/arXiv.1710.08864

Taken from [7]

FULL CATEGORIZATION [4]

[4] Rosenberg et al., Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain; DOI: 10.1145/3453158

