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ADVERSARIAL MACHINE LEARNING

Generative Adversarial Neural Adversarial Attacks/Examples
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Taken from [2]

Taken from [3]

Adversary: Opposing training Adversary: Fool models (malicious)
with small perturbations

[2] https://sthalles.github.io/intro-to-gans/
[3] Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification; DOI: 10.1109/CVPR.2018.00175
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QUICK CATEGORIZATION [4]

B \White-Box: +.007 x
1 Known model structure and Sn—
we I g hts i77’7cpgggzdeme gzrl;,c Cn::,tggzm

[0 Opposite: Black-Box

B Label-Targeted:

[0 Determine precise class to
misclassify to

[0 Opposite: Untargeted

34 Gibbon?

Adapted from [1]

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572
[4] Rosenberg et al., Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain; DOI: 10.1145/3453158

J z U Martin Dallinger; 06.06.2024 3



OTHER ATTACKS

B Data Poisoning [6] A R
[0 Change training data (labels)
B Model Poisoning [6]
[0 Example: Federated learning , R

' >

(a) Proximity according to Euclidean dis- (b) Proximity according to some other met-
tance ric

B “Configuration Poisoning® Taken from [3]

1 Lesser-known
[0 Commonly modify distance metrics
[0 Relaxation of triangle inequality for clustering (pseudometric) [5]
[5] Rass et al., Metricizing the Euclidean Space towards Desired Distance Relations in Point Clouds; DOI: 10.48550/arXiv.2211.03674

[6] Fang et al., Local Model Poisoning Attacks to Byzantine-Robust Federated Learning; DOI: 10.5555/3489212.3489304
[15] Image source: Goodfellow et al., https://github.com/cleverhans-lab/cleverhans
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NOVEL METHODS FOOL GPT4-V/BARD

B Simple manipulated stop-signs did not work for these models...

B But recent technique (Ensembles, novel ,Common Weakness
Attack”) manage to fool popular models [9] — 06.04.2024, GPT4-V

1 Cat:

0 Hand holding
mobile phone:

B BUT: Gemini resisted! — 06.04.2024

[9] Chen et al., Rethinking Model Ensemble in Transfer-Based Adversarial Attacks; DOI: 10.48550/arXiv.2303.09105
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NOT LIMITED TO IMAGES

S
.'\-\I ,r"'_’
B Different distributions to training in general! Uég\\c
O Antivirus / EDR Systems [10] < cverhans

_ Taken from [15]
0 Firewalls (even black-box: [11])

B Spaces of adversarial examples

[0 Adding randomness stays adversarial

B Already problematic for simple networks (logistic regression) [1]

0 Not due to overfitting!
[0 Also: Regularization (dropout, L2-reg, ...) does not help

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572
[10] Jakhotiya et al., Adversarial Attacks on Transformers-Based Malware Detectors; DOI: 10.48550/arXiv.2210.00008
[11] Usama et al., Black-box Adversarial Machine Learning Attack on Network Traffic Classification; DOI: 10.1109/IWCMC.2019.8766505
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TRANSFERABILITY

B Cross-Technique Transferability
using ,Substitute Models”

B Even Deep- vs.
Non-Deep-Learning!

B Substitute model might help
to evade Al-firewalls [11]

[0 Difficulty lies in valid packet
construction (CRC)

DNN: Deep Neural Networks
LR: Logistic Regression
SVM: Support Vector Machines
DT: Decision Trees
kNN: k Nearest Neighbours
Ens.: Ensembles (not precisely
stated...)
o DNN} 38.27 8.36  20.72 -
g
|
S
2 LR} 6.31 CIR RN YRS 11.29 44.14 -
(=2}
c
E
3 svml 2.51 56 WELIOIEEY 519  15.67
g
£
o
< DT} 0.82 8.85 5.11
@
=
=
o )
“KNNE 11,75 42.89 PR TIPS 41, 31.92 |
DNN LR SVM DT KNN  Ens.

Target Machine Learning Technique

Adversarial sample transferability
taken from [13]

[11] Usama et al., Black-box Adversarial Machine Learning Attack on Network Traffic Classification; DOI: 10.1109/IWCMC.2019.8766505
[13] Papernot et al., Transferability in Machine Learning: from Phenomena to Black-Box Attacks Using Adversarial Samples;

DOI: 10.48550/arXiv.1605.07277
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BASIC ATTACK STRATEGIES [12]

x: Input vector

B Fast Gradient Sign Method (FGSM) YLk ©): Logsﬁplﬁgj

C(x): Classifier parameterized by weights 0

L Essentla”y gradlent ascent [: Some different class than intended

[0 Simple and effective

B Basic Iterative Method (BIM)
0 Multiple FGSM
[0 Clipping to stay in e-Neighborhood
B L-BFGS Method
2

[0 Box-constrained optimization problem minimize |[zg — z|[3
0 Quasi-Newton method such that C(z) =

x*=x+€V,L(x,0)

B Many more complex and recent techniques [9] where z € [0, 1]”

[9] Chen et al., Rethinking Model Ensemble in Transfer-Based Adversarial Attacks; DOI: 10.48550/arXiv.2303.09105
[12] Papernot et al., Technical Report on the Cleverhans v2.1.0 Adversarial Examples Library; DOI: 10.48550/arXiv.1610.00768

J ! U Martin Dallinger; 06.06.2024 8



DEFENSES [10]

B Adversarial training: Also improves performance [1]
B Forcing black box attacks

B Ensembles [13] of simpler architectures if possble (Random Forests)

[0 No gradients
O Or more non-linear architectures: RBF [1]

B Reduce feature space [1]

B Certified robustness [14]

B Test with https://github.com/cleverhans-lab/cleverhans

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572

[10] Jakhotiya et al., Adversarial Attacks on Transformers-Based Malware Detectors; DOI: 10.48550/arXiv.2210.00008

[13] Papernot et al., Transferability in Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial Samples; DOI.:
10.48550/arXiv.1605.07277

[14] Chen et al., Certifying Robustness of Neural Networks With a Probabilistic Approach; DOI: 10.48550/arXiv.1812.08329
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https://github.com/cleverhans-lab/cleverhans
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CONCLUSION

B Be aware of (infinitely many) adversarial
examples

[0 Especially black box and transfer

B Harden/Test your systems (cleverhans)

B Cat and mouse game

B Questions?

Get in touch: Martin Dallinger, martin.dallinger@outlook.com
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CERTIFIED ROBUSTNESS [14]

B ,Small changes” should have the same class
B Certifiability to some epsilon-pertubation

B Using Lipschitz constrained networks

natural L' ) o < Certified robustness
image A = Minimum / N within the green region
Yo , adversarial distortion

- Adversarial

example
0.007 X '. | Decision
i u I boundary 3
. I

Gibbon

Il \

4 \

- N .
. A' N e . B, -~ = o
adversarial
image Decision boundary 1 Decision boundary 2
X )

Image taken from [15]

B Problem: Measure distance

[0 Semantic meaning (distinguish 8 vs 0 visually)

Lipschitz-Continuity as shown
in https://www.geogebra.org/m/bnsymijxh

[14] Chen et al., Certifying Robustness of Neural Networks With a Probabilistic Approach; DOI: 10.48550/arXiv.1812.08329
[15] Nick Frosst, Certifiable Robustness to Adversarial Attacks (Toronto ML Summit); https://www.youtube.com/watch?v=0fSxYqU-6s0&t=242s
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ADVERSARIAL T-SHIRT AGAINST
YOLO-V2 [8]

Taken from [8]

[8] Xu et al., Adversarial T-shirt! Evading Person Detectors in A Physical World; DOI: 10.1007/978-3-030-58558-7_39
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NOT UNIQUE/HARD TO FIND

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN. AliConv NiN VGG
. Subtle Poster Camouflage Camouflage Art  Camouflage Art {
Dutanceli\ngle Stibde Foster Right Turn Graffiti (LISA-CNN)  (GTSRB-CNN) “
I SHIP HORSE DEER
CAR(99.7%) FROG(99.9%) AIRPLANE(85.3%)
5% 0°
HORSE DOG BIRD
5% 15° DOG(70.7%) CAT(75.5%) FROG(86.5%)
K
10%10° CAR DEER
AIRPLANE(82.4%) DOG(86.4%) BIRD(66.2%)
107 30° _
DEER BIRD SHIP
AIRPLANE(49.8%) FROG(88.8%) AIRPLANE(88.2%)
HORSE SHIP
Targeted-Attack Success 100% 73.33% 66.67% DOG(88.0%) AIRPLANE(62.7% DOG(78.2%)
Taken from [3] Taken from [7]

[3] Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification; DOI: 10.1109/CVPR.2018.00175
[7] Su et al., One Pixel Attack for Fooling Deep Neural Networks; DOI: 10.48550/arXiv.1710.08864
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FULL CATEGORIZATION [4]

PE Binary
ot e
Feature

( None \\

PE Header
Fields

PCAP Header
Fields

[ PE Strings ]

PE Executed
API Calls

PCAP Statistics

Perturbed
Features

Email Words

Adversarial Attacks
in the Cyber Security URL Characters
= Bomain
Attacker's Training ]’ A =
e Attack's l[ubel-lndiscﬁminate]\
Targeting
eat Model | {abaltargated ]
Attack Type
Feature-Targeted ]

Black-Box

Attacker's
Knowledge

Targeted Phase

Attacker's
Goals
Confidentiality

A

Training

Gray-Box

Integrity

Availability ]

White-Box Transparent-Box

&
Taken from [4]

[4] Rosenberg et al., Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain; DOI: 10.1145/3453158
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