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ADVERSARIAL MACHINE LEARNING

[2] https://sthalles.github.io/intro-to-gans/

[3] Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification; DOI: 10.1109/CVPR.2018.00175

Taken from [2]

Adversary: Opposing training

Adversarial Attacks/Examples

Taken from [3]

Speedlimit: 45!

Adversary: Fool models (malicious)

with small perturbations
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QUICK CATEGORIZATION [4]

 White-Box:

 Known model structure and

weights

 Opposite: Black-Box

 Label-Targeted:

 Determine precise class to

misclassify to

 Opposite: Untargeted

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572

[4] Rosenberg et al., Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain; DOI: 10.1145/3453158

Gibbon?
Adapted from [1]
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OTHER ATTACKS

 Data Poisoning [6]

 Change training data (labels)

 Model Poisoning [6]

 Example: Federated learning

 “Configuration Poisoning“

 Lesser-known

 Commonly modify distance metrics

 Relaxation of triangle inequality for clustering (pseudometric) [5]

[5] Rass et al., Metricizing the Euclidean Space towards Desired Distance Relations in Point Clouds; DOI: 10.48550/arXiv.2211.03674

[6] Fang et al., Local Model Poisoning Attacks to Byzantine-Robust Federated Learning; DOI: 10.5555/3489212.3489304

[15] Image source: Goodfellow et al., https://github.com/cleverhans-lab/cleverhans 

Taken from [5]



NOVEL METHODS FOOL GPT4-V/BARD
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 Simple manipulated stop-signs did not work for these models…

 But recent technique (Ensembles, novel „Common Weakness

Attack“) manage to fool popular models [9] – 06.04.2024, GPT4-V

 Cat:

 Hands:

 BUT: Gemini resisted! – 06.04.2024

[9] Chen et al., Rethinking Model Ensemble in Transfer-Based Adversarial Attacks; DOI: 10.48550/arXiv.2303.09105

 Hand holding

mobile phone:



NOT LIMITED TO IMAGES
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 Different distributions to training in general!

 Antivirus / EDR Systems [10]

 Firewalls (even black-box: [11])

 Spaces of adversarial examples

 Adding randomness stays adversarial

 Already problematic for simple networks (logistic regression) [1]

 Not due to overfitting!

 Also: Regularization (dropout, L2-reg, …) does not help

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572

[10] Jakhotiya et al., Adversarial Attacks on Transformers-Based Malware Detectors; DOI: 10.48550/arXiv.2210.00008

[11] Usama et al., Black-box Adversarial Machine Learning Attack on Network Traffic Classification; DOI: 10.1109/IWCMC.2019.8766505

Taken from [15]



TRANSFERABILITY
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 Cross-Technique Transferability

using „Substitute Models“

 Even Deep- vs. 

Non-Deep-Learning!

 Substitute model might help

to evade AI-firewalls [11]

 Difficulty lies in valid packet 

construction (CRC)

DNN: Deep Neural Networks

LR: Logistic Regression

SVM: Support Vector Machines

DT: Decision Trees

kNN: k Nearest Neighbours

Ens.: Ensembles (not precisely

stated…)

[11] Usama et al., Black-box Adversarial Machine Learning Attack on Network Traffic Classification; DOI: 10.1109/IWCMC.2019.8766505

[13] Papernot et al., Transferability in Machine Learning: from Phenomena to Black-Box Attacks Using Adversarial Samples;

DOI: 10.48550/arXiv.1605.07277

Adversarial sample transferability

taken from [13]



BASIC ATTACK STRATEGIES [12]
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 Fast Gradient Sign Method (FGSM)

 Essentially gradient ascent

 Simple and effective

 Basic Iterative Method (BIM)

 Multiple FGSM

 Clipping to stay in 𝜖-Neighborhood

 L-BFGS Method

 Box-constrained optimization problem

 Quasi-Newton method

 Many more complex and recent techniques [9]

𝐱: Input vector

𝜖: Step-Size

𝛁𝐱𝑳 𝐱,𝚯 : Loss wrt. Input

𝐂(𝐱): Classifier parameterized by weights 𝚯
𝑙: Some different class than intended

[9] Chen et al., Rethinking Model Ensemble in Transfer-Based Adversarial Attacks; DOI: 10.48550/arXiv.2303.09105

[12] Papernot et al., Technical Report on the Cleverhans v2.1.0 Adversarial Examples Library; DOI: 10.48550/arXiv.1610.00768

𝒙∗ = 𝒙 + 𝜖 ∇𝒙 𝑳(𝒙, 𝚯)



DEFENSES [10]
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 Adversarial training: Also improves performance [1]

 Forcing black box attacks

 Ensembles [13] of simpler architectures if possble (Random Forests)

 No gradients

 Or more non-linear architectures: RBF [1]

 Reduce feature space [1]

 Certified robustness [14]

 Test with https://github.com/cleverhans-lab/cleverhans

[1] Goodfellow et al., Explaining and Harnessing Adversarial Examples; DOI: 10.48550/arXiv.1412.6572

[10] Jakhotiya et al., Adversarial Attacks on Transformers-Based Malware Detectors; DOI: 10.48550/arXiv.2210.00008

[13] Papernot et al., Transferability in Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial Samples; DOI: 

10.48550/arXiv.1605.07277

[14] Chen et al., Certifying Robustness of Neural Networks With a Probabilistic Approach; DOI: 10.48550/arXiv.1812.08329

https://github.com/cleverhans-lab/cleverhans
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CONCLUSION
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 Be aware of (infinitely many) adversarial

examples

 Especially black box and transfer

 Harden/Test your systems (cleverhans)

 Cat and mouse game

 Questions?

Get in touch: Martin Dallinger, martin.dallinger@outlook.com

SLIDES
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CERTIFIED ROBUSTNESS [14]
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 „Small changes“ should have the same class

 Certifiability to some epsilon-pertubation

 Using Lipschitz constrained networks

 Problem: Measure distance

 Semantic meaning (distinguish 8 vs 0 visually)

[14] Chen et al., Certifying Robustness of Neural Networks With a Probabilistic Approach; DOI: 10.48550/arXiv.1812.08329

[15] Nick Frosst, Certifiable Robustness to Adversarial Attacks (Toronto ML Summit); https://www.youtube.com/watch?v=OfSxYqU-6s0&t=242s

Image taken from [15]

Lipschitz-Continuity as shown

in https://www.geogebra.org/m/bnsymjxh



ADVERSARIAL T-SHIRT AGAINST
YOLO-V2 [8]
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[8] Xu et al., Adversarial T-shirt! Evading Person Detectors in A Physical World; DOI: 10.1007/978-3-030-58558-7_39

Taken from [8]



NOT UNIQUE/HARD TO FIND
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[3] Eykholt et al., Robust Physical-World Attacks on Deep Learning Visual Classification; DOI: 10.1109/CVPR.2018.00175

[7] Su et al., One Pixel Attack for Fooling Deep Neural Networks; DOI: 10.48550/arXiv.1710.08864

Taken from [3] Taken from [7]
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FULL CATEGORIZATION [4]

[4] Rosenberg et al., Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain; DOI: 10.1145/3453158

Taken from [4]
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